v

From Matrix-Vector Multiplication to
Matrix-Matrix Multiplication

There are a LOT of programming assignments this week.
* They are meant to help clarify “slicing and dicing”.

* They show that the right abstractions in the mathematics, when reflected in how we program,
allow one to implement algorithms very quickly.

* They help you understand special properties of matrices.

Practice as much as you think will benefit your understanding of the material. There is no need to do
them all!

4.1 Opening Remarks

4.1.1 Predicting the Weather

@ View at edX

The following table tells us how the weather for any day (e.g., today) predicts the weather for the next
day (e.g., tomorrow):
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Today
sunny | cloudy | rainy
sunny 0.4 0.3 0.1
Tomorrow cloudy | 04 0.3 0.6
rainy 0.2 0.4 0.3

This table is interpreted as follows: If today is rainy, then the probability that it will be cloudy tomorrow

1s 0.6, etc.

* sunny?
* cloudy?

* rainy?

Homework 4.1.1.1 If today is cloudy, what is the probability that tomorrow is

04 | 03 | 01
04 | 03 | 06

y | 02 | 04 | 03

@ View at edX

Homework 4.1.1.2 If today is sunny, what is the probability that the day after tomorrow is

sunny? cloudy? rainy?

Try this! If today is cloudy, what is the probability that a week from today it is sunny? cloudy?

rainy?

Think about this for at most two minutes, and then look at the answer.

@ View at edX

When things get messy, it helps to introduce some notation.

(k)

* Letx, ' denote the probability that it will be sunny k days from now (on day k).

(k)

* Let %’ denote the probability that it will be cloudy k days from now.

(k)

* Letx,;’ denote the probability that it will be rainy k days from now.
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The discussion so far motivate the equations

= 0axa® + 03x ™+ 0axy®
ng“) = (),4><X§k) + O.3><x£k) + 0.6><x£k)
= 02xg® 4 04+ 03xx Y.

The probabilities that denote what the weather may be on day k and the table that summarizes the

probabilities are often represented as a (state) vector, x®) and (transition) matrix, P, respectively:
e 04 03 0.1
= 4® | and P=| 04 03 06
%) 02 0.4 0.3

The transition from day & to day k+ 1 is then written as the matrix-vector product (multiplication)

o ) 04 03 0.1 e
xS 04 03 0.6 x %)
y ) 02 04 03 e

or 1) = px(®) | which is simply a more compact representation (way of writing) the system of linear
equations.

What this demonstrates is that matrix-vector multiplication can also be used to compactly write a set
of simultaneous linear equations.

Assume again that today is cloudy so that the probability that it is sunny, cloudy, or rainy today is 0, 1,

and 0, respectively:
(0)

Xs 0
OB VRS I
% 0

(If we KNOW today is cloudy, then the probability that is is sunny today is zero, etc.)

Ah! Our friend the unit basis vector reappears!

Then the vector of probabilities for tomorrow’s weather, x(!), is given by

e 04 03 0.1 70 04 03 0.1 0
Yyl = | 04 03 06 ¥ =1 04 03 06 |
e 02 04 0.3 7\ 02 04 0.3 0
04x0 + 03x1 + 0.1x0 0.3
= | 04x0 + 03x1 + 06x0 [=] 03

02x0 + 04x1 4+ 03x0 0.4




Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication

Ah! Pey = p1, where pg is the second column in matrix P. You should not be surprised!

The vector of probabilities for the day after tomorrow, x

72 04 03 0.1
@1 = | 04 03 06
72 02 04 03

Y

o

1
)

04x03 + 03x0.3

= 04x03 + 03x0.3

Repeating this process (preferrably using Python rather than by hand), we can find the probabilities for

02x03 + 04x0.3

2

, 1s given by

0.4 03 0.1

0.4 03 0.6

02 04 03

+ 0.1x04
+ 0.6x04
4+ 03x04

the weather for the next seven days, under the assumption that today is cloudy:

0.3
0.3
0.4

0.25
0.45
0.30

k
0 1 2 3 4 5 6 7
0 0.3 0.25 0.265 0.2625 0.26325 0.26312 0.26316
(k) = 1 0.3 0.45 0.415 0.4225 0.42075 0.42112 0.42104
0 0.4 0.30 0.320 0.3150 0.31600 0.31575 0.31580
@ View at edX
@ View at edX

We could build a table that tells us how to predict the weather for the day after tomorrow from the

weather today:
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Today
sunny | cloudy | rainy
sunny
Day after loud
Tomorrow cloudy
rainy
One way you can do this is to observe that

72 04 03 0.1 Y
@1 = | 04 03 06 7V
2 02 04 03 Y

04 03 0.1 04 03 0.1 [ %

= | 04 03 06 04 03 06 0

02 04 03 02 04 03 70

w1

=0 xﬁo)

2

where Q is the transition matrix that tells us how the weather today predicts the weather the day after
tomorrow. (Well, actually, we don’t yet know that applying a matrix to a vector twice is a linear transfor-
mation... We’ll learn that later this week.)

Now, just like P is simply the matrix of values from the original table that showed how the weather
tomorrow is predicted from today’s weather, Q is the matrix of values for the above table.
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Homework 4.1.1.4 Given

Today

sunny | cloudy | rainy
sunny 0.4 0.3 0.1
Tomorrow cloudy | 04 0.3 0.6
rainy 0.2 0.4 0.3

fill in the following table, which predicts the weather the day after tomorrow given the weather
today:

Today
sunny | cloudy | rainy
sunny
Day after
Tomorrow cloudy
rainy

Now here is the hard part: Do so without using your knowledge about how to perform a matrix-
matrix multiplication, since you won’t learn about that until later this week... May we suggest
that you instead use MATLAB to perform the necessary calculations.
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4.1.3 What You Will Learn

Upon completion of this unit, you should be able to

Apply matrix vector multiplication to predict the probability of future states in a Markov process.
Make use of partitioning to perform matrix vector multiplication.
Transpose a partitioned matrix.

Partition conformally, ensuring that the size of the matrices and vectors match so that matrix-vector
multiplication works.

Take advantage of special structures to perform matrix-vector multiplication with triangular and
symmetric matrices.

Express and implement various matrix-vector multiplication algorithms using the FLAME notation
and FlamePy.

Make connections between the composition of linear transformations and matrix-matrix multiplica-
tion.

Compute a matrix-matrix multiplication.
Recognize scalars and column/row vectors as special cases of matrices.

Compute common vector-vector and matrix-vector operations as special cases of matrix-matrix mul-
tiplication.

Compute an outer product xy” as a special case of matrix-matrix multiplication and recognize that

— The rows of the resulting matrix are scalar multiples of y .

— The columns of the resulting matrix are scalar multiples of x.
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4.2 Preparation

4.2.1 Partitioned Matrix-Vector Multiplication
@ View at edX
Motivation
Consider
—1 2 4 1 0
Ago | ao1 | A2 1 0l—-1|-21
A= alTO o1 asz = 2 —1 3 1 2 s
A | az1 | Ax 1 2 4 3
-1 =2] 0 1 2
1
X0 i Y0
x=1 = i and y=1[ y; |,
b %) 4 y2
5
where yg,y> € R%. Then y = Ax means that
Y0 Ao | ao1 | Aoz X0 Apoxo + aoix1 + Aopax2
y = Vi = alTo O asz X1 = alTOXO + onxr + aszm
2 Ay | a1 | An X2 Axoxo + axnx1 + Axnx
-1 2 1 4 10 4
+ 3
1 0 2 —1 -2 1 5
1 4
- (2_1) + (3)3+ (12) -
2 5
1 2 1 3 4 3 4
+ 3+
-1 =2 2 0 1 2 5
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( (4)+(2) x (5)
(=) x(1)+(2)x(2)+(4)x (3)+ (1) x (4)+(0) x (5 19
(1) >x (1) +(0)x(2)+(=1)x(3) +(=2) x (4)+ (1) x(5) =5
Q) x(M+(=Dx2)+B)xB)+ (M) xH+2)x(5) (=] 23
(DX (1)+(2)x(2)+(3) x(3)+(4) x (4)+(3) x (5) 45
(=1) x (1) +(=2) x (2) +(0) x (3) + (1) x (4) +(2) x (5) 9
Homework 4.2.1.1 Consider
-1 2 4 10 1
1 0 -1 -2 1 2
A= 2 -1 3 12 and x=1[ 3 |,
1 2 3 43 4
-1 -2 0 1 2 5

and partition these into submatrices (regions) as follows:

Ao | ao1 | Aoz X0

T T
aig | A11 | app and X1 )
A | az1 | Ax X2

partitioned:
-1 2 4 10 1
I 0 -1 =21 2
2 -1 3 1 2 3
1 2 3 43 4
-1 -2 0 1 2 5

where Aoy € R3*3, Xg € R3, oy is a scalar, and X1 is a scalar. Show with lines how A and x are

partitioned matrix-vector multiplication, similar to how this unit started.

Homework 4.2.1.2 With the partitioning of matrices A and x in the above exercise, repeat the
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Theory

LetA € R™" x € R", and y € R™. Partition

Ao Apqr |-+ | Aon—t1 X0 Yo
Ao A || AN X1 Y1
A= , X= , and y=
Av—10 |[Am—11 |~ |AM—1N-1 XN—1 YM—1

where

*m=mo+my+---+my_y,

m; >0fori=0,....M—1,

*n=nyg+n+---+nyN-i,

nj>0for j=0,...,N—1, and

Ajj€ Rm[xnj,xj € R, and y; € R™.

If y = Ax then
Ao A1 || Aon-1 X0
Ao Aip || AN X1
Av—10 |Am—11 | - | Ay—1N-1 XN—1

Ap,0x0 +Ao1X1 + - +FAoN-1XN—1

Aroxo+A1 X1+ +AI N_1XN-1

Apm—1,0%0 +Apm—11%1 + - +FAM_ 1 N—1XN-1
In other words,
N-1
vi= Y, Aijxj.
J=0

This is intuitively true and messy to prove carefully. Therefore we will not give its proof, relying on
the many examples we will encounter in subsequent units instead.

If one partitions matrix A, vector x, and vector y into blocks, and one makes sure the dimensions
match up, then blocked matrix-vector multiplication proceeds exactly as does a regular matrix-vector
multiplication except that individual multiplications of scalars commute while (in general) individual
multiplications with matrix and vector blocks (submatrices and subvectors) do not.
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The labeling of the submatrices and subvectors in this unit was carefully chosen to convey information.
Consider

Apo | ao1 | Aoz

_ T T
A= ap |our | ap

A | a1 | A2

The letters that are used convey information about the shapes. For example, for ap; and aj; the use of
a lowercase Roman letter indicates they are column vectors while the s in aITO and asz indicate that
they are row vectors. Symbols o;; and 7| indicate these are scalars. We will use these conventions
consistently to enhance readability.

Notice that the partitioning of matrix A and vectors x and y has to be “conformal”. The simplest
way to understand this is that matrix-vector multiplication only works if the sizes of matrices and
vectors being multiply match. So, a partitioning of A, x, and y, when performing a given operation, is
conformal if the suboperations with submatrices and subvectors that are encountered make sense.

4.2.2 Transposing a Partitioned Matrix

@ View at edX

Motivation
Consider
T T
1 -1 3]2 1 -1 3 2
2 =2 110 = 2 =21 0
o) =) T0)
T
1 -1 3 T
(O —4 3)
2 =21
= T
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1 -2
B 31

(20)
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0 1 2| o

—4 1 2| -4
3 B 3 1| 3

(2) 2 o] 2

This example illustrates a general rule: When transposing a partitioned matrix (matrix partitioned into
submatrices), you transpose the matrix of blocks, and then you transpose each block.

Homework 4.2.2.1 Show, step-by-step, how to transpose

1 —1|3 2
2 =211 0
0 —4(3 2
Theory
Let A € R™*" be partitioned as follows:
Ao,0 Ao, AoN—1
A 0 Al AN
A — b b 7N ,
Av—10 | Am-1,1 AM—1N-1
where A; ; € R™>" Then
T T T
Apo Al A1
T T T
AT — A1 A7 Ay_11
T T T
Aon—1 | Al N—1 Ap_1N-1

transpose the matrix as if it is a matrix of scalars. But then
actually a submatrix and you also transpose that submatrix.

Transposing a partitioned matrix means that you view each submatrix as if it is a scalar, and you then

you recognize that each of those scalars is

Special cases

We now discuss a number of special cases that you may encounter.
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Each submatrix is a scalar. If

00,0 0,1 | Ol N—1
1,0 O,1 | O N—1
A= ’
Opr—1,0 | Om—1,1 |~ | OM—1,N—1
then
T T T
®o.0 o || %y_1p 00,0 oo vt Oy-1p0
T T T
AT 0,1 O | ] Oy B 0,1 T ¢ VAR
O N1 0°1T,N71 e Oy QoN-1 QI N-1 - Ky—1N-1

This is because the transpose of a scalar is just that scalar.

The matrix is partitioned by rows. If

~T
ay
aj
A= ,
~T
am—l
where each ZII-T 1s arow of A, then
)
aj
T _ ~r\T ~r\T ~T T o ~ | ~ ~
AT = =(@"[@" @) =(alal @
~T
A1

This shows that rows of A, ZZI-T, become columns of AT ;.

The matrix is partitioned by columns. If

A

I
~/~
N
o
=2
N
3
|
~—

where each a; is a column of A, then

This shows that columns of A, a;, become rows of AT aJT..
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2 x 2 blocked partitioning. If

then

3 x 3 blocked partitioning. If

then
T T
Ago | ao1 | Ao Ado | (afp)” | Ay Ay | @10 | A%
Al = ajp | o1 | af, =| ab | ofy |4 | =] ap |our]|a]
Ay | 21 | Az Al | (aly)" | AL, Al | a1z | AZ

Anyway, you get the idea!!!
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Homework 4.2.2.2 Transpose the following matrices:

L(3)

3
]
8
3.(31\1\8)
1] 2] 3| 4
4.(5 6| 7/ 8
9101112
1]s] 9
| 2]6]0
31711
40812
123 4
6.(5 6| 7 8
9 10|11 12
T
1 2] 3 4
7.0l5 6/ 7 8
9 10|11 12

For any matrix A € R"™*",
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4.2.3 Matrix-Vector Multiplication, Again

=)=

(ebe)-(22)

@ View at edX

Motivation

In the next few units, we will modify the matrix-vector multiplication algorithms from last week so that
they can take advantage of matrices with special structure (e.g., triangular or symmetric matrices).

Now, what makes a triangular or symmetric matrix special? For one thing, it is square. For another, it
only requires one triangle of a matrix to be stored. It was for this reason that we ended up with “algorithm
skeletons” that looked like the one in Figure 4.1 when we presented algorithms for “triangularizing” or
“symmetrizing” a matrix.

Now, consider a typical partitioning of a matrix that is encountered in such an algorithm:

X XXX X X

Ago | ao1 | A2

Ay | a21 |Ax

where each X represents an entry in the matrix (in this case 6 x 6). If, for example, the matrix is lower
triangular,

x 01010

x x101]0
Ago | ao1 | Aoz

X xIx|0

dip | Qo1 | a1 | —

X
X
X
X

Ay | a21 | A

X X1 X | X

X X oo |lo O
X © o |lo]|]o O

X X | X | X

then ag; = 0, Agp = 0, and asz = 0. (Remember: the “0” is a matrix or vector “of appropriate size”.)
If instead the matrix is symmetric with only the lower triangular part stored, then ag; = (alTO)T = ajo,
A02 = A2TO, and a1T2 = agl.

The above observation leads us to express the matrix-vector multiplication algorithms for computing
y:=Ax+y given in Figure 4.2. Note:
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Algorithm: [A] := ALGORITHM_SKELETON(A)

Arp | Arr
Partition A —

ABL | ABr
whereAr; is 0 x 0

while m(Ar.) <m(A) do

Repartition
A A Aoo | ao1 | Aoz
7L | ATR
T T
| ajp | % | ap,
Apr | ABr
Ay | az1 | Ax

whereo;;is 1 x 1

Continue with

Ao | ao1 | Aoz

T

At | ATR

AL | ABr

Ay | az1 | Ax

endwhile

Figure 4.1: Code skeleton for algorithms when matrices are triangular or symmetric.

* For the left algorithm, what was previously the “current” row in matrix A, alT, is now viewed as
consisting of three parts:

T _
o = (o onr [af,)
while the vector x is now also partitioned into three parts:

X0

X1




4.2. Preparation

161

Algorithm: y := MVMULT_N_UNB_VARIB(A,x,y)

Algorithm: y := MVMULT_N_UNB_VAR2B(A,x,y)

. Arp | Arr
Partition A — R
Apr | Asr
XT yr
X — ,y = | —
XB VB

where ArL is 0 x 0, XT, YT are 0x1
while m(ATL) < m(A) do

Repartition
A A Ago | ao1 | A2
7L | ATR
— alTO o1 asz s
Apr | Agr
Ay | a21 | Ax
X0 Yo
XTr yr —
=1 x1 [ =)= wi
XB YB
X2 2

Y = a1T0X0 +1X1 +alT2x2 + VY1

Continue with

Ago | aor | Aoz
Arp | Arr T T
— ajo (0481 ai, .
Apr | Asr
Ay | a1 | A
X0 Yo
XT yr
— )| u [ |—]| w
XB YB -
X2 2
endwhile

. Arp | Arr
Partition A — R
Apr | Asr
XT yr
x— ,y = | —
XB YB

where A7y is 0 x 0, xr, yr are 0 x 1
while m(Ar.) <m(A) do

Repartition
A A Ago | ao1 | Aoz
L | ATR
— alTO o1 a1T2 s
AL | Agr
Ay | a2 | A
X0 Yo
XTr — yr —
=1 x1 [ {=] > w
XB I VB
X2 2

Yo :=X1a01 +Yo
Y1 =101+ VY
Y2 i =Y1a21+y2

Continue with

Ago | aor | Aoz
Arp | Arr T m
— ajo o1 ajn .
Apr | Agr
Ay | a1 | A
X0 Yo
XT I yr
<1 X1 sl < | W
Xp — B
x y2
endwhile

Figure 4.2: Alternative algorithms for matrix-vector multiplication.

As we saw in the first week, the partitioned dot product becomes

X0
T T T
ayx = ( alTo | o1 ‘ Clsz ) X1 = ajpXo +O11X1 +ajpx2,
X1
which explains why the update
T
Y1 i=a X+ L4}

1S NOW

T T
Y1 = ajpxo +011X1 +apxe +VYi.
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* Similar, for the algorithm on the right, based on the matrix-vector multiplication algorithm that uses

the AXPY operations, we note that

is replaced by

which equals

Yo
Vi
Y2
This explains the update
Yo
V1
2

—

yi=x1a1+y

aol Yo

o | T v

asi Y2

X14do1 +Yo
X101+ Y
X1a21 +y2

X1ao1 + Yo
X101+ W
X1a21 +y2.

Now, for matrix-vector multiplication y := Ax +y, it is not beneficial to break the computation up in this
way. Typically, a dot product is more efficient than multiple operations with the subvectors. Similarly, typ-
ically one AXPY is more efficient then multiple AXPYs. But the observations in this unit lay the foundation
for modifying the algorithms to take advantage of special structure in the matrix, later this week.

Homework 4.2.3.1 Implement routines

e [ y_out ] Mvmult_n_unb_varlB( A, x, y );and

e [ y_out ] Mvmult_n_unb_var2B( A, x, y )

that compute y := Ax + y via the algorithms in Figure 4.2.

4.3 Matrix-Vector Multiplication with Special Matrices

4.3.1 Transpose Matrix-Vector Multiplication

Dot product based y (1/ )and y @ y
Algorithm: 5 1= MVSTT N R VAR ] [ T
(=) (%)

"

i

@ View at edX
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Motivation
1 —2 0 —1
LetA = 2 -1 1 and x = 2 |. Then
1 23 _3
T
11-210 1 1 21 —1 0
Alx=1 2-1]1 2 =] =2 -1 2 2 =] -6
1] 2/3 -3 0 1 3 -3 —7

The thing to notice is that what was a column in A becomes a row in A .

Algorithms

Let us consider how to compute y := AT x +y.

It would be possible to explicitly transpose matrix A into a new matrix B (using, for example, the
transpose function you wrote in Week 3) and to then compute y := Bx + y. This approach has at least two
drawbacks:

* You will need space for the matrix B. Computational scientists tend to push the limits of available
memory, and hence are always hesitant to use large amounts of space that isn’t absolutely necessary.

* Transposing A into B takes time. A matrix-vector multiplication requires 2mn flops. Transpos-
ing a matrix requires 2mn memops (mn reads from memory and mn writes to memory). Memory
operations are very slow relative to floating point operations... So, you will spend all your time
transposing the matrix.

Now, the motivation for this unit suggest that we can simply use columns of A for the dot products
in the dot product based algorithm for y := Ax+y. This suggests the algorithm in FLAME notation in
Figure 4.3 (left). Alternatively, one can exploit the fact that columns in A become rows of AT to change
the algorithm for computing y := Ax+y that is based on AXPY operations into an algorithm for computing
y :=ATx+y, as shown in Figure 4.3 (right).

Implementation

Homework 4.3.1.1 Implement the routines
e [ yout ] = Mvmult_t_unbvarl( A, x, v );and
e [ yout ] = Mvmult_t_unbwvar2( A, x, vy )

that compute y := AT x + y via the algorithms in Figure 4.3.
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Algorithm: y := MVMULT_T_UNB_VARI1 (A, x,y)

Algorithm: y := MVMULT_T_UNB_VAR2(A, x,y)

T
Partition A — (ALlAR> ;Y — 2z
yB

where Ay ismx0and yris0x 1

while m(yr) <m(y) do

yr
(ufas) = (o) (2] | w
y2

endwhile

Repartition

Yo
yr —
(acar) = (o]afaz) | =] = | wi
yB —
y2

Y1 i=al x4+

Continue with
Yo

YB I

.. Ar xr
Partition A > | — | ,x— | —
Ap XB

where A7 is O x nand x7 is 0 x 1
while m(Ar) <m(A) do

Repartition
Ag X0
At — xr —
=] (=)=
Ap — XB
A X2
yi=x1a1+y

Continue with

Ao X0
AT 7T XT
—|«ld |.|—]«|xu
Ap — XB —

A X2

endwhile

Figure 4.3: Algorithms for computing y := AT x +y.

that accesses the matrix by columns.

Homework 4.3.1.2 Implementations achieve better performance (finish faster) if one accesses
data consecutively in memory. Now, most scientific computing codes store matrices in “‘column-
major order” which means that the first column of a matrix is stored consecutively in memory,
then the second column, and so forth. Now, this means that an algorithm that accesses a matrix
by columns tends to be faster than an algorithm that accesses a matrix by rows. That, in turn,
means that when one is presented with more than one algorithm, one should pick the algorithm

Our FLAME notation makes it easy to recognize algorithms that access the matrix by columns.

 For the matrix-vector multiplication y := Ax 4y, would you recommend the algorithm
that uses dot products or the algorithm that uses axpy operations?

» For the matrix-vector multiplication y := AT x +y, would you recommend the algorithm
that uses dot products or the algorithm that uses axpy operations?

The point of this last exercise is to make you aware of the fact that knowing more than one algorithm
can give you a performance edge. (Useful if you pay $30 million for a supercomputer and you want to get

the most out of its use.)
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4.3.2 Triangular Matrix-Vector Multiplication

@ View at edX
Motivation
Let U € R™" be an upper triangular matrix and x € R” be a vector. Consider
-1 2| 4/ 1 0 1
Uoo | uo1 | Unz X0 0 0)]-1]-21 2
Ux = MlTo V11 u1T2 X1 | = 00 3 1 2 i
Uy | u21 | U2 X2 00 4 3 4
00 2 5
* *
* *
T T T
. 0 1 1 4 _ 1 4
= +(3)(3)+ =1 G)B)+ )
0 2 2 5 2 5
* *
* *

where xs indicate components of the result that aren’t important in our discussion right now. We notice
that ulTO = 0 (a vector of two zeroes) and hence we need not compute with it.

Theory
If
Uoo | uor | Uo2
Urr | Urr = -
v— | Mo |Vu| U |-
Upr | Ugr

Uy | uz1 | U

where Uz, and Uy are square matrices. Then

e Up =0, ulTO =0, Uyo =0, and up; = 0, where 0 indicates a matrix or vector of the appropriate
dimensions.

* Urr, and Upg are upper triangular matrices.
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We will just state this as “intuitively obvious”.
Similarly, if

Loo | lo1 | Loz
L7 | Ltr
L— - l lT 0 7\,1 1 [ 1T2 )
Lpy, | Lgr
Ly | by | Lo

where L7y, and Log are square matrices, then

e L7r =0, lpy =0, Lpp =0, and lsz = 0, where 0 indicates a matrix or vector of the appropriate
dimensions.

e L7y and Lpg are lower triangular matrices.

Algorithms

Let us start by focusing on y := Ux + y, where U is upper triangular. The algorithms from the previous
section can be restated as in Figure 4.4, replacing A by U. Now, notice the parts in gray. Since ulTO =0and
up1 = 0, those computations need not be performed! Bingo, we have two algorithms that take advantage
of the zeroes below the diagonal. We probably should explain the names of the routines:

TRMVP_UN_UNB_VARI: Triangular matrix-vector multiply plus (y), with upper triangular
matrix that is not transposed, unblocked variant 1.

(Yes, a bit convoluted, but such is life.)

Homework 4.3.2.1 Write routines

e [ yout ] = Trmvp_un_.unb_varl ( U, x, vy );and

e [ yout ] = Trmvp_un_unbwvar2( U, x, y )

that implement the algorithms in Figure 4.4 that compute y := Ux+y.

Homework 4.3.2.2 Modify the algorithms in Figure 4.5 so that they compute y := Lx +y,
where L is a lower triangular matrix: (Just strike out the parts that evaluate to zero. We suggest
you do this homework in conjunction with the next one.)

Homework 4.3.2.3 Write the functions
e [ yout ] = Trmvp_lnunbvarl ( L, x, vy );and
e [ yout ] = Trmvp_lnunbwvar2( L, x, vy )

that implement thenalgorithms for computing y := Lx 4y from Homework 4.3.2.2.

Homework 4.3.2.4 Modify the algorithms in Figure 4.6 to compute x := Ux, where U is an
upper triangular matrix. You may not use y. You have to overwrite x without using work
space. Hint: Think carefully about the order in which elements of x are computed and over-
written. You may want to do this exercise hand-in-hand with the implementation in the next
homework.
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Algorithm: y := TRMVP_UN_UNB_VAR1 (U, x,y)

Algorithm: y := TRMVP_UN_UNB_VAR2(U,x,y)

. Urr | Urr
Partition U — R
UpL | Ugr
XT yr
x5 |=—],y—= | —
XB YB

where U7y is0x 0, xy, yr are 0 x 1
while m(Urr) <m(U) do

Repartition
U U Uoo | uo1 | Un2
TL TR
— ulTO V11 usz s
Upr | Usr
Uy | u21 | U2
X0 Yo
XT — yr —
7| x| |77 w
XB - VB
X2 Y2

T T
Y1 1= X0+ V11Xl + Upx2 + Y1

Continue with

Uoo | uo1 | Unz
Urr | Urr T T
— Ujo Vi1 25D )
UpL | Usr
Uy | uz1 | Az
X0 Yo
XT — yr
-_— X1 s A Vi
XB - yB
X2 Y2
endwhile

o Urr | Urr
Partition U — R
UpL | Usr
Xr yr
x=|=—1],y—= [—
XB YB

where Uz is 0 x 0, x7, yr are 0 x 1
while m(Ury) <m(U) do

Repartition
Uoo | uo1 | Un2
Urr | Urr - -
— up | v11 | upp ,
Upr | Usr
Uy | u21 | U2
X0 Yo
XT — yr —
7| x| |77 W
XB VB
X2 2
Yo 1= YX1Uo1 + Yo
Y1 :=X1V11 + Vi1
Y2 1= X1U21 +y2

Continue with

Uoo | uo1 | Uoz
Urr | Urr T T
— Ujo Vi1 Ui, .
Upr | Usr
Uy | uz1 | Az
X0 Yo
XT yr
—_— =] X1 || ]| W
XB - yB -
X2 2
endwhile

Figure 4.4: Algorithms for computing y := Ux +y, where U is upper triangular.

Homework 4.3.2.5 Write routines

[ xoout ] = Trmv_un_unb_varl ( U, x );and

[ xoout ] =

Trmv_un_unb_var2 ( U,

that implement the algorithms for computing x := Ux from Homework 4.3.2.4.
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Algorithm: y := TRMVP_LN_UNB_VARI1(L,x,y)

Algorithm: y := TRMVP_LN_UNB_VAR2(L,x,y)

Repartition
Lty | Lrr
4)
Lpy, | Lar
X0
X7 —_—
— 7| nu
Xg _—
x

. Ltr | L7r
Partition L — s
Lpr | Lar
Xr yr
x—=|=—] .,y | —
XB YB

where L7y is 0 x 0, x7, yr are 0 x 1
while m(Lrr) <m(L) do

Loo | lor | Loz
Ly | Iy | L
Yo
yr —
s — — Wl
VB
y2

Y = ZITOX() +Mix1 +lszxz +Vy

Continue with

Ltr | L7r
—
Lpr | Lpr
X0
X7 —_—
— | < X1
XB _
X2
endwhile

T T
Lo A 112 >

Ly | by | L

Yo
yr
, | =] (U
VB
y2

. Ltr | L7r
Partition L — s
Lpr | Lpr
Xr yr
x| =—],y—= | =—
XB YB
where L7; is 0 x 0, x7, yr are 0 x 1
while m(Lr.) <m(L) do
Repartition
Loo | lo1 | Loz
Lrp | Ltr = -
— l10 M1 112 s
Lpr | Lgr
Ly | by | L
X0 Yo
XT — yr —
— 7| wu T 7| W
XB - VB
X2 2
Yo := X1lo1 +yo
Y1 = Y1A11 + Y1
y2:=x1h1+y2
Continue with
L L Loo | lo1 | Loz
L | LTr
— l{o )\.11 1{2 )
Lpr | Lpr
Ly | by | L
X0 Yo
XT — yr
— || X1 s | < | Wi
XB - yB -
X2 Y2
endwhile

Figure 4.5: Algorithms to be used in Homework 4.3.2.2.

Homework 4.3.2.6 Modify the algorithms in Figure 4.7 to compute x := Lx, where L is a lower
triangular matrix. You may not use y. You have to overwrite x without using work space.
Hint: Think carefully about the order in which elements of x are computed and overwritten.
This question is VERY tricky... You may want to do this exercise hand-in-hand with the imple-
mentation in the next homework.
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Algorithm: y := TRMVP_UN_UNB_VAR1 (U, x,y)

Algorithm: y := TRMVP_UN_UNB_VAR2(U,x,y)

. Urr | Urr
Partition U — R
UpL | Ugr
XT yr
x5 |=—],y—= | —
XB YB

where U7y is0x 0, xy, yr are 0 x 1
while m(Urr) <m(U) do

Repartition
U U Uoo | uo1 | Un2
TL TR
— ulTO V11 usz s
Upr | Usr
Uy | u21 | U2
X0 Yo
XT — yr —
7| x| |77 w
XB - VB
X2 Y2

T T
Y1 1= X0+ V11Xl + Upx2 + Y1

Continue with

Uoo | uo1 | Unz
Urr | Urr T T
— Ujo Vi1 25D )
UpL | Usr
Uy | uz1 | Az
X0 Yo
XT — yr
-_— X1 s A Vi
XB - yB
X2 Y2
endwhile

o Urr | Urr
Partition U — R
UpL | Usr
Xr yr
x=|=—1],y—= [—
XB YB

where Uz is 0 x 0, x7, yr are 0 x 1
while m(Ury) <m(U) do

Repartition
Uoo | uo1 | Un2
Urr | Urr - -
— up | v11 | upp ,
Upr | Usr
Uy | u21 | U2
X0 Yo
XT — yr —
7| x| |77 W
XB VB
X2 2
Yo 1= YX1Uo1 + Yo
Y1 :=X1V11 + Vi1
Y2 1= X1U21 +y2

Continue with

Uoo | uo1 | Uoz
Urr | Urr T T
— Ujo Vi1 Ui, .
Upr | Usr
Uy | uz1 | Az
X0 Yo
XT yr
—_— =] X1 || ]| W
XB - yB -
X2 2
endwhile

Figure 4.6: Algorithms to be used in Homework 4.3.2.4.

Homework 4.3.2.7 Write routines

[ yout | =

[ yout | =

Trmv_ln_unb_var2( L,

Trmv_ln_unb_varl ( L, x );and

that implement the algorithms from Homework 4.3.2.6 for computing x := Lx.
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Algorithm: y := TRMVP_LN_UNB_VARI1(L,x,y) Algorithm: y := TRMVP_LN_UNB_VAR2(L,x,y)
. Ltr | L7r . Lrr | Lrr
Partition L — s Partition L — s
LBL LBR LBL LBR
XT yr Xr yr
x> |—],y> | — x> |—],y= | —
XB YB XB YB
where L7y is 0 x 0, x7, yr are 0 x 1 where L7; is 0 x 0, x7, yr are 0 x 1
while m(Lrr) <m(L) do while m(Lr.) <m(L) do
Repartition Repartition
Loo | lot | Loz Loo | lo1 | Loz
LTL LTR LTL LTR
— llTo A1 1{2 , — llT() M1 1{2 s
Lpy, | Lar Lpr | Lgr
Ly | Iy | L Ly | by | L
X0 Yo X0 Yo
XT — yr — Xr — yr —
— || x 3 Bl Bl RV ] 7| nu 3 Bl Bl IR V1
XB VB XB — YB
X2 2 X2 2
Yo := X1lo1 +yo
Y1 = loxo+ A + e+ V1= X1+ Y
y2:=x1h1+y2
Continue with Continue with
L L Loo | lo1 | Loz L L Loo | lo1 | Loz
TL TR TL TR
<— llTo 7\.11 1{2 , — l1T0 7\.11 1{2 ,
LBL LBR LBL LBR
Ly | by | L Ly | by | L
X0 Yo X0 Yo
XT yr XT - yr
— || X1 s | < | Wi — || X1 s | < | Wi
XB - VB XB - VB -
X2 2 X2 y2
endwhile endwhile

Figure 4.7: Algorithms to be used in Homework 4.3.2.6.

Homework 4.3.2.8 Develop algorithms for computing y := UTx+y and y := LTx +y, where
U and L are respectively upper triangular and lower triangular. Do not explicitly transpose
matrices U and L. Write routines

e [ yout ] = Trmvp_ut_unb_varl ( U, x, vy );and
e [ yout ] = Trmvp_ut_unbwvar2( U, X, y )
e [ yoout ] = Trmvp_lt_unb_varl ( L, x, v );and
e [ yoout ] = Trmvp_-lnunbwvar2( L, x, vy )

that implement these algorithms.
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Homework 4.3.2.9 Develop algorithms for computing x := U7 x and x := LT x, where U and L
are respectively upper triangular and lower triangular. Do not explicitly transpose matrices U
and L. Write routines

e [ yout ] = Trmv_ut_unbvarl ( U, x );and
e [ yout ] = Trmv_ut_unb_var2( U, x )
e [ yout ] = Trmv_.lt_unb.varl ( L, x );and
e [ yout ] = Trmv_lnunbvar2( L, x )

that implement these algorithms.

Cost
Let us analyze the algorithms for computing y := Ux + y. (The analysis of all the other algorithms is very

similar.)

For the dot product based algorithm, the cost is in the update Y| := V111 + u1T2x2 + v which is
typically computed in two steps:

* Y :=V11)X1 + VY1; followed by

* adot product y; := uszxz +Vi.

Now, during the first iteration, u1T2 and x; are of length n— 1, so that that iteration requires 2(n— 1) +2 =2n
flops for the first step. During the kth iteration (starting with k = 0), u1T2 and x, are of length (n—k—1) so
that the cost of that iteration is 2(n — k) flops. Thus, if A is an n X n matrix, then the total cost is given by

n—1 n—1

Y Rn—k)]=2) (n—k)=2(n+(n—1)+---+1) :2ik:2(n+1)n/2.
k=0 k=0 k=1

n(n+1) )

flops. (Recall that we proved in the second week that }/' ;i = =

Homework 4.3.2.10 Compute the cost, in flops, of the algorithm for computing y := Lx+y
that uses AXPY s.
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Fory:=Ux+y, TRSVP_UN_UNB_VARI] or TRSVP_UN_UNB_VAR2?
Does the better algorithm use a dot or an axpy?

Fory:=Lx+y, TRSVP_LN_UNB_VAR] or TRSVP_LN_UNB_VAR2?
Does the better algorithm use a dot or an axpy?

Fory:=U"x+y, TRSVP_UT_UNB_VAR] or TRSVP_UT_UNB_VAR2?
Does the better algorithm use a dot or an axpy?

Fory := LTx+y, TRSVP_LT_UNB_VAR1 or TRSVP_LT_UNB_VAR2?
Does the better algorithm use a dot or an axpy?

Homework 4.3.2.11 As hinted at before: Implementations achieve better performance (finish
faster) if one accesses data consecutively in memory. Now, most scientific computing codes
store matrices in “‘column-major order” which means that the first column of a matrix is stored
consecutively in memory, then the second column, and so forth. Now, this means that an al-
gorithm that accesses a matrix by columns tends to be faster than an algorithm that accesses a
matrix by rows. That, in turn, means that when one is presented with more than one algorithm,
one should pick the algorithm that accesses the matrix by columns.
Our FLAME notation makes it easy to recognize algorithms that access the matrix by columns.
For example, in this unit, if the algorithm accesses submatrix ag; or a»; then it accesses columns.
If it accesses submatrix alTO or asz, then it accesses the matrix by rows.
For each of these, which algorithm accesses the matrix by columns:

4.3.3

Symmetric Matrix-Vector Multiplication

- EEER

i

@ View at edX

Motivation
Consider
-1 21 4| 10
Aoo | ao1 | Aoz 2 0|-1]-21
ay o |dal, |= 4 -1 3| 1 2
Ay | az1 | A 1 =21 1| 4 3
0O 1| 2| 32
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Here we purposely chose the matrix on the right to be symmetric. We notice that a]TO =aop1, Ago =Ap2, and
a1T2 = az1. A moment of reflection will convince you that this is a general principle, when Aqg is square.
Moreover, notice that Agg and Ay» are then symmetric as well.

Theory
Consider
Ago | ao1 | Az
Arr | ATr - -
A: - 6110 0611 alz b
AprL | ABr

Ay | az1 | Ax

where A7y and Agg are square matrices. If A is symmetric then
* Arr, AR, Ago, and Ay are symmetric;
e aly=al, and al, = al ; and
® A20 = Agz.

We will just state this as “intuitively obvious”.

Algorithms

Consider computing y := Ax+y where A is a symmetric matrix. Since the upper and lower triangular part
of a symmetric matrix are simply the transpose of each other, it is only necessary to store half the matrix:
only the upper triangular part or only the lower triangular part. In Figure 4.8 we repeat the algorithms for
matrix-vector multiplication from an earlier unit, and annotate them for the case where A is symmetric and
only stored in the upper triangle. The change is simple: ajo and ay; are not stored and thus

 For the left algorithm, the update y; := alToxo + o1 + aszxz + Wy, must be changed to y; :=
a&xo +o11X1 +a1TZX2 + V1.

* For the algorithm on the right, the update y, := y(1a>1 + y2 must be changed to y; :=1a12 + y2 (or,
more precisely, y2 := X1 (al,)T +y, since al, is the label for part of a row).

Homework 4.3.3.1 Write routines

e [ y_out ] Symv_u_unb_varl ( A, x, y );and
e [ yout ] = Symv.uunb.var2( A, x, y )

that implement the algorithms in Figure 4.8.

Homework 4.3.3.2 Modify the algorithms in Figure 4.9 to compute y := Ax +y, where A is
symmetric and stored in the lower triangular part of matrix. You may want to do this in con-
junction with the next exercise.
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Algorithm: y := SYMV_U_UNB_VAR2(A,x,y)

Algorithm: y := SYMV_U_UNB_VARI(A,x,y)

Arp | Arr
Partition A — R
AL | Asr
Xr yr
X | —]y s | —
XB yB

where A7y is 0 x 0, xr, yr are 0 x 1
while m(ArL) <m(A) do

Repartition
A A Ago | ao1 | Aoz
L | Arr
= | alo | o1 | afy
Apr | Agr
Ay | a2 | A
X0 Yo
XT I yr
— =l u ||| w
XB yB
X2 Y2
T
doy
=~

. T
Y= aj onr()Ll]X]Jra{zszr\V]

Continue with

A A Ago | apr | Aoz
L | Arr
«— a{o o1 a{z
ApL | Asr
Ay | az1 | Az
X0 Yo
Xr - yr
_ = 1|l ]| W
XB - VB
X2 Y2
endwhile

. Arr | Arr
Partition A — ,
ApL | Asr
XT yr
x> |—],y—> | —
XB YB

where Ay is0x 0, xp, yr are 0 x 1

while m(Ar.) <m(A) do
Repartition
Ago | ao1 | Aoz
Arp | Arr
— alTO o1 a1T2 >
ApL | ABr
Ay | ax | Ax
X0 Yo
XT — yr —
] 7| nu |~ Vi
XB I VB
X2 2
Yo :=X1a01 + Yo
Y1 i=X101 + Y
Y2i=X1 @21 ¥y
——
ap
Continue with
Ago | ao1 | Aoz
Arp | Arr T T
S g0 | %1 ] g |-
Apr | Asr
Ay | ax | A
X0 Yo
XT — yr
— | < 1 |-l ]| W
XB — YB —
X2 Y2
endwhile

Figure 4.8: Algorithms for computing y := Ax +y where A is symmetric, where only the upper triangular

part of A is stored.

Homework 4.3.3.3 Write routines

* [ yout ] =

* [ yout ] =

Symv_l_unb_varl ( A, x, y );and

Symv_1l_unb_var2( A, x, y )

that implement the algorithms from the previous homework.
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Algorithm: y := SYMV_L_UNB_VARI(A,x,y)

Algorithm: y := SYMV_L_UNB_VAR2(A,x,y)

Arp | Arr
Partition A — s
ApL | Asr
XT yr
X |=—],y— [ =—
XB yB

where A7y is 0 x 0, x7, yr are 0 x 1
while m(Arz) <m(A) do

Repartition
A A Ago | ao1 | Aoz
7L | Arr
T T
— aio (0481 ajn s
Apr | Asr
Ay | a2 | Ax
X0 Yo
XT I yr
— =l |- |—]|>| w
XB yB
X2 Y2

Y = alToxo +O1X1 +alT2x2 + WV

Continue with

Ago | ao1 | Aoz
Arp | Arr T T
— ajo o1 ajn ,
ApL | Asr
Ay | ax | A
X0 Yo
Xr yr
_— 1 s |=—] <] W
XB - yB
x »
endwhile

Arp | Arr
Partition A — ,
ApL | ABr
XT yr
X |=—],y— | =—
XB YB

where A7y is0x 0, xr, yr are 0 x 1
while m(Arz) <m(A) do

Repartition
Ago | ao1 | Aoz
Arp | Arr - -
— ao o1 ajn s
Apr | Asr
Ay | a2 | Ax
X0 Yo
XT I yr —
— =l x| |—]| w
XB — yB
X2 Y2
Yo :=X1ao1 + Yo
Y1 i=X1011 + Y
Y21 =Y1a21 + )2

Continue with

Ago | ao1 | Aoz
Arp | Arr T T
— aj o1 a, ,
Apgr | Agr
Ay | ax | A
X0 Yo
Xr - yr
—_—] 1 , | =] V1
XB E— B —_—
x 2
endwhile

Figure 4.9: Algorithms for Homework 4.3.3.2
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Homework 4.3.3.4 Challenge question! As hinted at before: Implementations achieve better
performance (finish faster) if one accesses data consecutively in memory. Now, most scientific
computing codes store matrices in “‘column-major order” which means that the first column of
a matrix is stored consecutively in memory, then the second column, and so forth. Now, this
means that an algorithm that accesses a matrix by columns tends to be faster than an algorithm
that accesses a matrix by rows. That, in turn, means that when one is presented with more than
one algorithm, one should pick the algorithm that accesses the matrix by columns. Our FLAME
notation makes it easy to recognize algorithms that access the matrix by columns.

The problem with the algorithms in this unit is that all of them access both part of a row AND
part of a column. So, your challenge is to devise an algorithm for computing y := Ax 4y where
A is symmetric and only stored in one half of the matrix that only accesses parts of columns.
We will call these “variant 3”. Then, write routines

e [ y_out ] Symv_u_unb_var3 ( A, x, y );and

e [ y-out ] Symv_1_unb_var3( A, x, y )
Hint: (Let’s focus on the case where only the lower triangular part of A is stored.)

e If A is symmetric, then A = L+ LT where L is the lower triangular part of A and L is the
strictly lower triangular part of A.

Identify an algorithm for y := Lx 4y that accesses matrix A by columns.

Identify an algorithm for y := LTx+ y that accesses matrix A by columns.

You now have two loops that together compute y := Ax+y = (L+ L’ Jx+y=Lx+ LTx+ y.

* Can you “merge” the loops into one loop?

4.4 Matrix-Matrix Multiplication (Product)

4.4.1 Motivation

@ View at edX

The first unit of the week, in which we discussed a simple model for prediction the weather, finished
with the following exercise:
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Given

Today

sunny | cloudy | rainy

Tomorrow

sunny 0.4 0.3 0.1

cloudy | 04 0.3 0.6

rainy 0.2 0.4 0.3

Today

sunny | cloudy | rainy

Day after
Tomorrow

sunny

cloudy

rainy

fill in the following table, which predicts the weather the day after tomorrow given the weather today:

Now here is the hard part: Do so without using your knowledge about how to perform a matrix-matrix
multiplication, since you won’t learn about that until later this week...

The entries in the table turn out to be the entries in the transition matrix Q that was described just above

the exercise:

)
W
2

Now, those of you who remembered from, for example, some other course that

0.4 03 0.1

0.4
0.2

0.4
0.4
0.2

04 0.3 0.1
0.4 03 0.6
02 04 03

0.3
0.4

0.3
0.3
0.4

0.6
0.3

0.1
0.6
0.3

Y

Y

1

M
04 03 0.1 70
04 03 06 50

02 04 0.3 50

04 03 0.1 70
04 03 06 0
02 04 03 7\

04 03 0.1 04 03 0.1
04 03 0.6 0.4 03 0.6
02 04 03 02 04 03

1
=o|

o

1

o

Y
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would recognize that

0.4 03 0.1 0.4 03 0.1
Q=1 04 03 06 04 03 0.6
0.2 04 03 0.2 04 03

And, if you then remembered how to perform a matrix-matrix multiplication (or youdid P * P in Python),
you would have deduced that

0.3 0.25 0.25
0= 04 045 04
03 03 0.35

These then become the entries in the table. If you knew all the above, well, GOOD FOR YOU!

However, there are all kinds of issues that one really should discuss. How do you know such a matrix
exists? Why is matrix-matrix multiplication defined this way? We answer that in the next few units.

4.4.2 From Composing Linear Transformations to Matrix-Matrix Multiplication

@ View at edX

Homework 4.4.2.1 Let L, : RF — R™ and Lg : R" — R* both be linear transformations and,
for all x € R", define the function L¢ : R” — R™ by Le(x) = La(Lp(x)). Lc(x) is a linear
transformations.

Always/Sometimes/Never

Now, let linear transformations Ly, Lg, and L¢ be represented by matrices A € R™<k B e R¥" and
C € R™" respectively. (You know such matrices exist since Ly, Lg, and L¢ are linear transformations.)
Then Cx = L¢(x) = La(Lp(x)) = A(Bx).

The matrix-matrix multiplication (product) is defined as the matrix C such that, for all vectors x,
Cx = A(B(x)). The notation used to denote that matrix is C = A x B or, equivalently, C = AB. The
operation AB is called a matrix-matrix multiplication or product.
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If A is my X ng matrix, B is mp X ng matrix, and C is m¢ X nc matrix, then for C = AB to hold it must
be the case that mc = my, nc = np, and nqy = mp. Usually, the integers m and n are used for the sizes
of C: C € R™*" and k is used for the “other size”: A € R™*¥ and B € Rk*";

n k n

B - > - >

m C =m A

Homework 4.4.2.2 Let A € R™". ATA is well-defined. (By well-defined we mean that A7 A
makes sense. In this particular case this means that the dimensions of A” and A are such that
AT A can be computed.)

Always/Sometimes/Never

Homework 4.4.2.3 Let A € R™". AAT is well-defined.
Always/Sometimes/Never

4.4.3 Computing the Matrix-Matrix Product

@ View at edX
The question now becomes how to compute C given matrices A and B. For this, we are going to use
and abuse the unit basis vectors e;.
Consider the following. Let

C e R™" A € R™k and B € RF*"; and

C =AB; and

Lc : R" — R™ equal the linear transformation such that L¢(x) = Cx; and

Ly : RF — R™ equal the linear transformation such that L, (x) = Ax.

Lp : R" — R¥ equal the linear transformation such that Lg(x) = Bx; and

e; denote the jth unit basis vector; and

c;j denote the jth column of C; and
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* b; denote the jth column of B.

Then
cj=Cej=Lc(ej) = La(Lp(ej)) = La(Be;) = La(bj) = Ab;.

From this we learn that

If C = AB then the jth column of C, ¢, equals Ab;, where b; is the jth column of B.

Since by now you should be very comfortable with partitioning matrices by columns, we can summarize
this as

(coler | ewr ) =c=a8=A( o1 1 ) = (|- ).

Now, let’s expose the elements of C, A, and B.

Y0,0 Yoo 0 Yon—1 0,0 Qo1 0 Ook—1
Y1,0 Y1 0 Yin—1 1,0 1075 I ¢ 5 I |
C = . ? A = . ?
Ym—-1,0 Ym—11 - Ym—1n-1 On—1,0 Oun—11 - Olp—1k—1

Boo Boi - Pon-t

nd B l31.,0 [31.,1 51,7—1

Bk—l,O Bk—Ll Bk—Ln—l

We are going to show that
k—1
Yij = Z % pPBp, s
p=0

which you may have learned in a high school algebra course.

We reasoned that c; = Ab;:

Yo,/ 0,0 Oop,1 - Ook—1
Yi,j a0 O - k-1 Bo,;
. B . B
i, o0 i1 Ok :
: Br—1,

Ym—1,j Op—1,0 Om—1,1 - Oyp—1k—1
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Here we highlight the ith element of c;, V; j, and the ith row of A. We recall that the ith element of Ax
equals the dot product of the ith row of A with the vector x. Thus, ¥; ; equals the dot product of the ith row
of A with the vector b:

k—1
p=0

Let A € R™k B e RK*" and C € R™*". Then the matrix-matrix multiplication (product) C = AB is
computed by

k—1
Yij= Y, QipBp.j = 0ioPo,j+0iiPrj+-+ix_1Br1-
p=0

As a result of this definition Cx = A(Bx) = (AB)x and can drop the parentheses, unless they are useful
for clarity: Cx = ABx and C = AB.

Homework 4.4.3.1 Compute

04 03 0.1 04 03 0.1
Q=PxP=] 04 03 0.6 04 0.3 0.6
02 04 03 02 04 03

We emphasize that for matrix-matrix multiplication to be a legal operations, the row and column
dimensions of the matrices must obey certain constraints. Whenever we talk about dimensions being
conformal, we mean that the dimensions are such that the encountered matrix multiplications are valid
operations.

2 01
- 21 21
Homework 4.4.3.2 LetA = andB=1| 0 1 0 1 |.Compute
1 31
1 010
-1 11
* AB=
* BA=

Homework 4.4.3.3 Let A € R™** and B € R**" and AB = BA. A and B are square matrices.
Always/Sometimes/Never

Homework 4.4.3.4 Let A € R"*¥ and B € R*". AB = BA.
Always/Sometimes/Never
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Homework 4.4.3.5 Let A,B € R"*". AB = BA.
Always/Sometimes/Never

Homework 4.4.3.6 A? is defined as AA. Similarly AF = AA---A . Consistent with
——

k occurrences of A

this, A° = I so that A¥ = A*~1A for k > 0.
AK is well-defined only if A is a square matrix.
True/False

Homework 4.4.3.7 Let A, B,C be matrix “of appropriate size” so that (AB)C is well defined.

A(BC) is well defined.
Always/Sometimes/Never

4.4.4 Special Shapes

@ View at edX

We now show that if one treats scalars, column vectors, and row vectors as special cases of matrices,
then many (all?) operations we encountered previously become simply special cases of matrix-matrix
multiplication. In the below discussion, consider C = AB where C € R™*", A € R™*k and B € Rk*7,

m = n = k = 1 (scalar multiplication)

In this case, all three matrices are actually scalars:

(00 )= (oo ) (Buo ) = ( aofoo )

so that matrix-matrix multiplication becomes scalar multiplication.

Homework 4.4.4.1 Let A = < 4 ) and B = < 3 ) Then AB=___.



https://courses.edx.org/courses/UTAustinX/UT.5.02x/1T2015/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/4
https://courses.edx.org/courses/UTAustinX/UT.5.02x/1T2015/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/4

4.4. Matrix-Matrix Multiplication (Product) 183

n=1,k=1(SCAL)

A e 1
AT ] A [ ]
13
m||C|l=m||A
YL | 1
Now the matrices look like
Y0.0 00,0 00,0B0,0 Bo,00t0.0 00,0
Y1.0 010 01,0800 Bo,001 0 01,0
= Boo ) = : = : =Boo
Yim—1,0 Oln—1,0 On—1,0B0,0 Bo.0%n—10 Oln—1,0

In other words, C and A are vectors, B is a scalar, and the matrix-matrix multiplication becomes scaling of
a vector.

1
Homework 4.4.42 LetA= | —3 | and B = ( 4 > Then AB —

2
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Homework 4.4.4.3 Start up a new IPython Notebook and try this:

import numpy as np

x = np.matrix( "1;2;3" )
print ( x )

alpha = np.matrix( "-2" )
print ( alpha )

print ( x * alpha )
Notice how x , alpha, and x * alpha are create at matrices. Now try
print ( alpha * x )

This causes an error! Why? Because numpy checks the sizes of matrices alpha and x and
deduces that they don’t match. Hence the operation is illegal. This is an artifact of how numpy
is implemented.

Now, for us a 1 x 1 matrix and a scalar are one and the same thing, and that therefore o = xaL.
Indeed, our 1aff.scal routine does just fine:

import laff
laff.scal( alpha, x )
print ( x )

yields the desired result. This means that you can use the 1aff.scal routine for both update
X := o and x := xqL.

m=1,k=1(SCAL)

nwL__ ¢ J=uaji_ B |

Now the matrices look like

<Yo,o Yo - Yo,n—l) = (%,0)([30,0 Bog - Bo,n—1>
= Oc070<l3>0,0 Bo1 - B07n—1>

= (060,030,0 00.0B0,1 -+ 0o0Bon—1 )

In other words, C and B are just row vectors and A is a scalar. The vector C is computed by scaling the
row vector B by the scalar A.

Homework 4.4.4.4 LetA = < 4 ) and B = < 1 =3 2 ) Then AB =
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Homework 4.4.4.5 Start up a new IPython Notebook and try this:

import numpy as np

xt = np.matrix( '1,2,3" )
print ( xt )

alpha = np.matrix( "-2" )
print ( alpha )

print ( alpha * xt )
Again, notice how xt , alpha, and alpha * xt are create at matrices. Now try
print ( xt * alpha )

This causes an error! Why? Because numpy checks the sizes of matrices alpha and x and
deduces that they don’t match. Hence the operation is illegal. Again, this is an artifact of how
numpy is implemented.

Now, for us a 1 x 1 matrix and a scalar are one and the same thing, and that therefore ol =x
Indeed, our 1aff.scal routine does just fine:

Ty,

import laff
laff.scal( alpha, xt )
print ( xt )

yields the desired result. This means that you can use the 1aff.scal routine for both update
xT :=ox? and xT :=xT .

m=1,n=1(DOT)

1 k 1

e = 114 ] 1
k

The matrices look like
Bo.o
( Y0,0 ) = ( Go,o Qo1 -+ Ook—1 ) 6{70 - ki‘,;OCO,po,O-
=

Br—1,0

In other words, C is a scalar that is computed by taking the dot product of the one row that is A and the
one column that is B.
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2
Homework 4.4.4.6 Let A = < 1 -3 2 ) and B = —1 |.Then AB =
0

Homework 4.4.4.7 Start up a new IPython Notebook and try this:

import numpy as np

xt = np.matrix( "1,2,3" )
print ( xt )

y = np.matrix( "-1;0,2" )
print( y )

alpha = xt * y
print ( alpha )

We prefer using our laff.dot and laff.dots routines, which doesn’t care about whether x
and y are rows or columns, making the adjustment automatically.

k = 1 (outer product)

n <L n
] 1 B |
m C =m||A
Yoo  Yor 0 Yoa-1 00,0 <Bo,o Bog1 - Bo,n—l)
71,0 Y11 o V-1 _ 1,0
Ymn—-1,0 Ym—-11 - VYm—1n—1 On—1,0
000Boo  ®0oBo1 - 00B0n—1
B aofoo  @ioBor  cr i oBoa-1

On—10B00 Om—10B01 -+ On—1,0B0.n—1
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Homework 4.4.4.8 Let A = ( -3

1

2

) and B = ( -1 =2 ).ThenAB:

columns and by rows:

Homework 4.4.4.9 Let a =

~—

-3

¢
C:<C0‘C1> and C = E{
3

) and bT = ( 1 2 ) and C = ab”. Partition C by

Then
1 (=Dx (1)
co=(=1) -3 (—1)x(=3) True/False
2 (=Dx (2)
1 (=2)x (1)
ci=(-2)| -3 (—2)x(-3) True/False
2 (=2)x (2)
(=Dx (1) | (=2)x (1)
c C=| (=1)x(=3) | (=2)x(=3) True/False
(=Dx (2) | (=2)x (2)
) = (1)(—1 -2 z( (1)x(-1) (1)><(—2)> True/False
=3 (-1 —2)=(3xC1 Ix-2)) Truc/False
=1 2)=( @x-1n @x-2 ) True/False
(=Dx (1) (=2)x (1)
c C=1] (—1)x(=3) (=2)x(-3) True/False
(=Dx (2) (=2)x (2)
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Homework 4.4.4.10 Fill in the boxes:

[]

EII (2 -13)=| "

[]

o

LI
HiNnn

(o) \S)

Homework 4.4.4.11 Fill in the boxes:

: 000
BB -0
; 000

n = 1 (matrix-vector product)

Lok
A [ A
k
m||Cl=m A
y L | Y
Y0,0 0,0 Oo1 o Ook—1 Bo.o0
Y1,0 B 1,0 L T5 R 0 Bl,o
Yin—1,0 On—10 Op—11 - Op1j—1 Br—1,0

We have studied this special case in great detail. To emphasize how it relates to have matrix-matrix
multiplication is computed, consider the following:

Y0,0 0,0 Qo1 o Ook—1
Bo.o0
B1.0
Yi,0 = OG0 o1 e O k—1 )
Br—1,0

Ym—1,0 On—1,0 Oun—11 - Ohp—14k—1




4.4. Matrix-Matrix Multiplication (Product) 189

m =1 (row vector-matrix product)

Boo Boir - Bon-i
Bio Bir - Bra-i
(Yo,o Y01 - 'YO.,n71> = <0€0,0 Qo,1 - (Xo.,k71> : : . :

Br—10 Br—11 - Br—1na-1

so thatyp j = ZI;;%) 0,pBp, ;- To emphasize how it relates to have matrix-matrix multiplication is computed,

consider the following:

(Yo,o el Y0 Yo,nq)

Boo | Poj |+ Bomet
Bio | By |- Biaa

= (Oto,o Qo1 - OCO,kfl)

Br—10 - | Br—1, | Br—1,n-1

1 -2 2
Homework 4.4.4.12 Let A = ( 010 ) andB=| 4 2 0 |.ThenAB =
1 2 3

Homework 4.4.4.13 Let ¢; € R™ equal the ith unit basis vector and A € R™*". Then eiTA = diT,
the ith row of A.

Always/Sometimes/Never

Homework 4.4.4.14 Get as much practice as you want with the following IPython Notebook:
4.4.4.11 Practice with matrix-matrix multiplication.
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If you understand how to perform a matrix-matrix
multiplication, then you know how to perform all
other operations with matrices and vectors that
we have encountered so far.

4.4.5 Cost

@ View at edX

Consider the matrix-matrix multiplication C = AB where C € R"™*" A € R™*k and B € R¥*". Let us
examine what the cost of this operation is:

* We argued that, by definition, the jth column of C, ¢}, is computed by the matrix-vector multiplica-
tion Ab;, where b; is the jth column of B.

» Last week we learned that a matrix-vector multiplication of a m X k matrix times a vector of size k
requires 2mk floating point operations (flops).

* C has n columns (since it is a m X n matrix.).

Putting all these observations together yields a cost of

n x (2mk) = 2mnk flops.

Try this! Recall that the dot product of two vectors of size k requires (approximately) 2k
flops. We learned in the previous units that if C = AB then v; ; equals the dot product of the
ith row of A and the jth column of B. Use this to give an alternative justification that a matrix
multiplication requires 2mnk flops.

4.5 Enrichment

4.5.1 Hidden Markov Processes

If you want to see some applications of Markov processes, find a copy of the following paper online (we
don’t give a link here since there may be legal implications. But you can find a free download easily):
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A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, L.
R. Rabiner, Proc. IEEE, Vol. 77, No. 2, pp. 257-286, February 1989.

Now, be warned: Some researchers will write vectors as row vectors and instead of computing Ax will
compute x” AT But, thanks to the material in this week, you should be able to “transpose” the descriptions
and see what is going on.

4.6 Wrap Up

4.6.1 Homework

Homework 4.6.1.1 Let A € R™*" and x € R". Then (Ax)T = xTAT.
Always/Sometimes/Never

Homework 4.6.1.2 Our laff library has a routine
laff gemv( trans, alpha, A, x, beta, y )
that has the following property
* laff gemv( 'No transpose’, alpha, A, x, beta, y ) computesy:= atAx+ Py.
e laff gemv( ’'Transpose’, alpha, A, x, beta, y ) computesy:= OCAT)H—By.

The routine works regardless of whether x and/or y are column and/or row vectors.
Our library does NOT include a routine to compute y := x’A. What call could you use to
compute y’ :=xT A if y is stored in yt and x” in xt?

e laff_gemv( "No transpose’, 1.0, A, xt, 0.0, yt ).
e laff gemv( 'No transpose’, 1.0, A, xt, 1.0, yt ).
e laff gemv( ’'Transpose’, 1.0, A, xt, 1.0, yt ).

e laff_gemv( ’"Transpose’, 1.0, A, xt, 0.0, yt ).

I -1
Homework 4.6.1.3 LetA = . Compute
I -1
. A2 —
. A3 —

e Fork > 1, Ak =
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Homework 4.6.14 LetA =

0A2:
0A3:
e Forn>0,A%" =

e Forn>0,AH =

Homework 4.6.1.5 Let A =

0A2:
.A3:
e Forn>0,A" =

e Forn >0, A%t =

Homework 4.6.1.6 Let A be a square matrix. If AA = 0 (the zero matrix) then A is a zero
matrix. (AA is often written as A2.)
True/False

Homework 4.6.1.7 There exists a real valued matrix A such that A> = —J. (Recall: I is the
identity)

True/False
Homework 4.6.1.8 There exists a matrix A that is not diagonal such that A> = I.
True/False
4.6.2 Summary
Partitioned matrix-vector multiplication
Aoo | Aoa1 |--| Aon-—1 X0 Ap,0%0 +A0,1x1 + - + Ao N-1XN-1

Ao | Atg || Ain—a X1 Aroxo+A X1+ - FAIN-1XN-1

Av—10|Am—11| " |[AM—1 N1 XN—1 Apv—10%0 +AM—11x1+ - +FAM_ I N-1XN-1




4.6. Wrap Up 193

Transposing a partitioned matrix

T T T
Aoo | Aog || Aon-i Aoo | Ao || Am—1p

T T T
Ao | Ar || Ain-d | Ao | Al || A

T T T
Ay-10 [Am-11 | = | AM—1N-1 AO,Nfl Al,Nfl AMfl,Nfl

Composing linear transformations

Let Ly : R¥ — R™ and Lg : R" — R* both be linear transformations and, for all x € R”, define the function
Lc:R" — R™ by Le(x) = La(Lp(x)). Then L¢e(x) is a linear transformations.

Matrix-matrix multiplication

AB:A( bo | b || Bu >=<Ab0 by |- | ab, )
If
Y0,0 Yoi 0 Yon—1 00,0 Oop,1 - Ook—1
C— Y1,0 Y1 o 71,1.1—1 A= 1,0 o1 061,.k71 ’
Ym—-1,0 Ym—11 - Ym—1n-1 On—1,0 Om—1,1 -+ Oyp—1k—1
Boo Boi - Bon-t

nd B 131.,0 31.,1 Bl,fz—l

Br—10 Br—11 - Br—1,-1

then C = AB means that y; j = Z’l‘;% i pBp,j-
A table of matrix-matrix multiplications with matrices of special shape is given at the end of this week.
Outer product

Let x € R” and y € R". Then the outer product of x and y is given by xy”. Notice that this yields an m x n
matrix:

X0 Yo X0
X1 L\ X1
xyT - : : - : (WO Vi W”_1>

Am—1 Yn—1 Am—1
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XoYo XoV1 - XoWn—1
X1Yo Xivr 0 X1VWn—1

Xm—1VYo Am—1V1 - Am—1Yn—1
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m | n | k| Shape Comment
L L L Scal Itiplicati
calar multiplication
Pt faticl= 14{a] 14[B]
L 4 1
] nB
m|1|1],, cl=mlla Vector times scalar =
scalar times vector
n 1 n
Lin| 1|1} C | = 1}[A] 1}] B ‘ Scalar times row vector
. el
tlel= 1A |
11k k Dot product (with row and
column)
. XL n
B ]
min|l1l],, C = ml| A Outer product
L kL
k
m| 1 klmllcl=m A Matrix-vector multiplica-
tion
n k . n .
1] C =1} A
1 | n|k k B Row vector times matrix
multiply
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LAFF routines

uw g (¥ ‘A& 'x ‘eydre )1eb | y+ M0 =:y | (¥44D)aepdn [-yuey
U g ( £ 'eaeq ‘x ‘y ‘eydre ‘,ssodsueil, )Awsb \ﬁ._.xgﬂo =:4 | (AWdD) uonedrdnnu
uu uug ( K 'e3aq ‘x ‘y ‘eydie ‘,osodsueal oN, )Awsb g 4+ xy0 =: £ | 10109A-XLIJRW [RISUID)
suonetddo J03I9A-XII)RIA]

u ug ( ¥ )zuiou = eydre x| =:0 (ZTWION) qISu]
ug ug ( eydTe ‘A ‘x )s?qop oo._lﬁa =0 (s1oa) 1npoad 10q
ug ug ( A 'x )3op = eydre a&RH” 0 (Loa) 1onpoid joq
ug ug ( A ‘x ‘eydre )Adxe £4+x0 =: £ |(AdXV) UonIppe pa[eds
ug u ( x ‘eydre )T1eOSAUT 0/X=:x | (TvDS) 3uIess 101097
ug u ( x ‘eydre )T1eDS X0 =:x | (TVDS) SUI[BIS J0IOA
ug 0 ( & 'x )Adoo x=:4 (Xd0D) AdoD
suone1ddo J103I9A-10)93A

sdowowr | sdopg “I3eT

1500 “xoiddy uonoung uonIuyd( "A91qQqy uoneradQ
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